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Stereochemistry of 1-hydroxyphosphonate–phosphate
rearrangement. Retention of configuration at the phosphorus atom
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Abstract—1-Hydroxyphosphonate 1 in the presence of triethylamine in acetonitrile solution undergoes irreversible rearrangement to
phosphate 2 and reversible retro-phospho-aldol (retro-Abramov) reaction. The X-ray structures for 1 and 2 revealed that the phos-
phonate–phosphate rearrangement occurs with retention of configuration at the phosphorus atom.
� 2006 Elsevier Ltd. All rights reserved.
1-Hydroxyphosphonic acids and their esters exhibit a
variety of biological activities as enzyme inhibitors, anti-
viral, antibacterial, and anticancer drugs.1 The majority
of studies carried out over the last two decades have
been dedicated mostly to the asymmetric synthesis of
hydroxyphosphonates.2 1-Hydroxyphosphonates are
easily synthesized from aldehydes and phosphites via
the base-catalyzed Pudovik reaction.3 In the presence
of strong bases, 1-hydroxyphosphonates undergo the
retro-phospho-aldol (retro-Abramov)4 reaction to phos-
phites and carbonyl compounds and rearrangement to
phosphates5 (Scheme 1). The mechanisms of these
reactions were studied by kinetic methods,6 however,
the stereochemical studies were limited to one system.
The rearrangement of diethyl 1-hydroxy-1-phenyl-
ethylphosphonate to diethyl 1-phenylethylphosphate
and the reverse reaction were found to proceed with
retention of configuration at the stereogenic carbon.7,8

In the phosphonate–phosphate rearrangement the enan-
tiomeric excess of phosphate was lowered by the accom-
panying retro-Abramov reaction.8
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Scheme 1.
To explore the stereochemistry of phosphonate–phos-
phate rearrangement at the phosphorus atom, 1-hydroxy-
phosphonate 1 was chosen as a model system. 5,5-
Dimethyl-4-phenyl-1,3,2-dioxaphosphorinane deriva-
tives have been applied as resolving agents,9,14 chiral
synthons10 as well as in conformational11 and mechanis-
tic12 studies. The synthesis of 1-hydroxyphosphonate
1 was based on the reported procedure.13 Treatment
of racemic 2H-2-oxo-5,5-dimethyl-4-phenyl-1,3,2-dioxa-
phosphorinane 314 with 2-nitrobenzaldehyde 4 in toluene
in the presence of triethylamine afforded 1-hydroxy-
phosphonate 1 as a mixture of diastereoisomers 1a
and 1b, which were evident as two signals in the 31P
NMR spectrum in a 1:1 ratio at dP 12.4 and 13.0, respec-
tively.15 The diastereoisomers were easily separated
by fractional crystallization16 and crystals suitable for
X-ray analysis were obtained.17 The conformation of
the 1,3,2-dioxaphosphorinane ring is a regular chair
flattened at the P end and with the 4-phenyl and phos-
phoryl groups in equatorial orientations (Fig. 1A). Both
stereoisomers 1a and 1b are racemic mixtures with
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Figure 1. The ORTEP plots of phosphonate 1a (A) and phosphate 2

(B).
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relative configurations R*, S*, R*, and R*, S*, S* at the C-
4 and P-2 stereogenic centers of the six-membered het-
erocycle, and the carbinol atom, respectively.

The rearrangement of phosphonate 1a or 1b to phos-
phate 2 was carried out at 65 �C in acetonitrile in the
presence of triethylamine as the catalyst and followed
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Scheme 2.
by means of 31P NMR. The rate of phosphate formation
was the same for both isomers. When isomer 1a was
used as the substrate the formation of the second stereo-
isomer 1b was observed simultaneously with the phos-
phonate–phosphate rearrangement. The appearance of
the second stereoisomer proves the presence of the com-
petitive retro-Abramov reaction (Scheme 2). The half-
life of phosphate formation in acetonitrile at 65 �C
was found to be equal to about 20 · [amine]�1 min.
The rate of the retro-Abramov reaction is comparable
to the rate of rearrangement and both reactions were
much slower than the Pudovik reaction. The reverse
phosphate–phosphonate rearrangement was not ob-
served. Details of kinetic studies will be published
elsewhere.

Analysis of the X-ray structure of phosphate 2 (Fig. 1B)
revealed the same (R*) relative configurations at the C-4
and P-2 atoms while they were different in 1 (Fig. 1A).
At first the result seemed surprising, because inversion
of configuration at the phosphorus atom requires
attacking and leaving groups in linear positions, which
is unlikely for the intramolecular rearrangement. How-
ever, formally the carbon atom in the phosphonate 1
was replaced by the oxygen atom in the phosphate 2
and the positions of the other oxygen atoms were the
same. Thus, the change of SP configuration in 1 to RP

in 2 originates not from a change in the arrangement
of atoms surrounding phosphorus, but from the replace-
ment of carbon by oxygen, which possesses higher prior-
ity according to Cahn–Ingold–Prelog (CIP) rules.18

To explain the retention of configuration at the phos-
phorus atom we propose the following mechanism
(Scheme 3). Overall, the phosphonate–phosphate rear-
rangement requires P–C bond breakage and formation
of the P–O bond. If one of these processes is the rate lim-
iting step, the nucleophilic substitution via trigonal bipy-
ramidal (TBP) intermediates should involve apical
addition and apical elimination processes.19 In the pres-
ence of triethylamine, 1-hydroxyphosphonate 1a exists
in equilibrium with an anion 5. Axial attack of the carb-
inol oxygen followed by pseudorotation will lead to
pentacoordinate intermediate 6 with one of the ring
P–O bonds in the axial position. In trigonal bipyramid
6 the axial–equatorial position of the dioxaphosphor-
inane ring and the equatorial position of the negatively
charged oxygen are preferable.20,21 Subsequent pseudo-
rotation rearrangement is necessary for the placement
of the carbon atom into an apical position as in 7 prior
to cleavage of the P–C bond.
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In conclusion, this is the first experimental observation
of the stereochemistry on the phosphorus atom during
the phosphonate–phosphate rearrangement. We are
presently working on elucidation of the mechanism of
this reaction in detail by kinetic isotope effects.
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